International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July -September 201 g %j/

A Novel Approach to Simplifying Boolean
Functions of Any Number of Variables

T Mathialakan Dr S Mahesan
Department of Physical Science Department of Computer Science
Vavuniya Campus, University of Jaffna, Faculty of Science, University of Jaffna,
Jaffna, Sri Lanka Jaffna, Sri Lanka

mathialakan@mail .vau.jfn.ac.lk mahesans@jfn.ac.lk

Abstract- Expressions of Boolearfunctions in the minimal form would be essential for many needs such .
hardware designs. There areseveral ways such as -map technique and talular method of Quine-
McCluskey to simplify the Boolean expressionsThese currently used techniques have drawbaclsuch as
the limitation on number of variablesand dependence on ‘minterms’Hence, these methoddo not adapt
programming perfectly. A new method has been introdcec in this paper to minimise the Boolear
functions without considering the minterms. This méhod deals with the sum of product (S(P)
expressions -t takes the input as SOP and gives the tput as SOP.Each product in SOP is encoded in .
novel way and represented in a row of a table whertéhe columns correspond to the variables involvedi
the expressions. The encoded products are takenip@y pair and an appropriate rule of the set of fair
sound rules is applied to simplify. The encodingsiused to select the most promising pairs to appipe
rules in a systematic way. This process is contindeuntil no further pair selection is possible This novel
idea makes possible that the expressit can contain any number of variables without increamg the
complexity of thesimplification process though it needs a little mag work in encoding and in selecting th
most promising products. Also, this idea can be e programmed as the algorithm is \ery systematic.
The implementation of the algorithm in C# and tesiig proves that the idea works well efficiently tbugh
looks simple. In fact, no similar idea is reportedo our knowledge.

Keywords-Boolean function, Boolean expressior-map, mintermsum of product (SOP), tup

|. INTRODUCTION

Boolean expression expressed the logical functionsrms o'logical variables. Values taken by the logi
functions andogical variables are in the binary form. Any laglizariable ca have only one of the two valu
0 and 1, and any logicalariable binary variable) may appear either in its normainfo(4) or in its
complemented form4’). Minimisation of Boolean function one of the major tasks in digital design proc
with consideringhe number of gates used, physical space coveepower consumptic. The traditional way
of minimisation process such asNap and Tabular is used with applying of basic ms&@nd theorems. [1]
Further, these methods are found to be depend: minterms of all the variables involved, thus maitesne
consuming even converting the given expressionargam o minterms.

For example, the Boolean expres:A'BC + A + AB of three variable has to be converted A'BC +
ABC + ABC' + AB'C' + ABC + ABC' by replacing A byABC + AB'C + AB'C' and AB byABC + ABC',
whereas in the method proposed in this paper haribee expression in the given form by way of intrcidg
encryption by giving 1 for a variable for its unped form and O for its primed form andi for its absence.

Hence, an algorithm is designed for simplificatioihBoolean expression without obtaining minterm:
simplify in a systematic way and thus to implemierd higt-level language.

Il. METHODOLOGY

The expession is given as a sum of products, not nedgssarminterms, from which the products &
extracted and representiedts encryption form in a table row by ro

A new technique is learned by analysing the Idaabtems and proper rules of Boolealgebra. The
product terms in the encrypted form are comparead Ipa pair and reduced into simpler form as muct
possible.

For exampleconsider the input expressid’BC + A + AB.From this expression, t product termsi’BC,
A, andAB are identifying the occurrences of three variabfg B, C, the products are encrypted into follow
records respectively: [0, 11]

[1,-1,1]
[1, 1,4]

ISSN: 2349 - 6363
103

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September @12

The size of a record resulting from the encryptiepends on the number of variables involved ingikien
expression, each number in a record correspontteteariables involved: 1 representing the unprifoech, 0
representing primed form and -1 its absence.

The following tabular representation makes this tearer:

Variables
Record
A B C
1 0 1 1
2 1 -1 -1
3 1 1 -1

The next step is to introduce a measure calidex to each row representing the number of 1s occurred
that row. [1] The indices for the above example ré&, and 2 respectively. Then, the records asedezed in
the ascending of indices.

The rows are compared in order pair by pair andedluction/elimination as appropriate and possilyle b
considering the following identities of two variabl

1. xy+x'y =y
2. x+xy = x+y
3. xww+x'=x"+y
4. x +xyz = x
5. x + x' = true
How we apply these rules: Let us see one by otleeodbove five rules.

Case 1 (Logical adjacency)y + x'y corresponds to two records, namely,

1 1
0 1

In which one column has 1 and 0 while the otheumwl has the same bit 1. In such a case, theseotw® r
will be replaced by a new row -1, 1 which corregimoto y.

Case 2 (Absorption)k + x'y which corresponds to the records

1 -1
0 1

Here one column has 1 and 0 and the other hasd-1.dm such a case, the bit which diagonally ofipde
-1 will be replaced by -1 resulting in

1 -1
-1 1
corresponding ta + y.

Case 3 (Absorptionky + x' - this case is similar to case 2, resulting in

-1 1
0 -1
corresponding ta’ + y

Case 4 (Absorption): + xyz corresponds to

1 -1 -1
1 d e

d, e can be any encryption number.

In this table, one column has the same bit 1 wiseaidhe other encryption number is -1 in one rbwsuch
a case, the row other than the one which has tileenr1 except for that in one column will be rered.

104

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September @12

Case 5 (Complement):+ x' corresponds to

1

in which one entry is 1 and the other is 0, resglin the Boolean value true, and further procgssmot
needed.

The above idea can be extended to any number iales.
A. Algorithm

The records are stored in a matnif][], the size of whichi timesq, wherep is the number of product
terms ang is the number of variables. The matrix is sortethe ascending order indices of each record -evher
‘index' means the number of 1s in the record.

Simplification is performed as follows:

rowl = 1
while (p — 1) do
{
row2 = rowl + 1
while (p) do
{
comparerowl androw?2
let c10 = number of occurrences such thdtrow1,j] == 1 andm[row2,j] == 0 for somej
+ number of occurrences such thgtrowl, k] == 0 andm[row2,k] == 1 for somek
c1_1 = number of occurrences such thgtrow1,j] == 1 andm[row2,j] == —1 for someg
+ number of occurrences such thgtrow1, k] == 0 andm[row2, k] == —1 for somek
¢_11 = number of occurrences such thdtrow1, j] == —1 andm[row?2, j] == 1 for somg
+ number of occurrences such thgtrowl, k] == —1 andm[row2, k] == 0 for somek
c11 = number of occurrences such thgtrow1, j] == 1 andm[row?2,j] == 1 for somg
+ number of occurrences such thetrow1, k] == 0 andm[row2, k] == 0 for somek

if (¢c10 + ¢1_1 4+ c_11is 1 and it occurs in columh
setm[rowl,j] = -1,
remove row2 (this row2 will not be included aftbiststep)
setrowl = —1

break inner loop

elseif (c10 ==1&c1.1 > 0&c¢_11 == 0 and itc10 occurs in colump)
setm[rowl, jl = —1
setrowl = —1

break inner loop

elseif (c10 ==1&c¢1_1==0&c_11 > 0 and itc10 occurs in colump)
setm[rowl, j] = —1
setrowl = —1

break inner loop

105

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September @12

elseif(c1l0 ==0&c1_1==0&c_11 > 0 and itc10 occurs in columjn)
removerow2

elseif (c10==0&c¢1_1>0&c_11 == 0 and itc10 occurs in colump)
removerowl

}

Decrypt the matrixn into final simplified Boolean expression.

Let us consider another example to see how thiithgn works:
The input expressionisy’ + y + yz + yzw + z

The matrix m[][] and the index will be as follows correspondingh® five products:

Record Variables Index
y z w
1 0 -1 -1 1
2 -1 1 -1 -1 1
3 -1 1 -1 2
4 -1 1 1 3
5 -1 -1 1 -1 1
This matrix is sorted in the ascending order oéinds follows:
Variables
Record Index
X y z w
1 1 0 -1 -1 1
2 -1 1 -1 -1 1
3 -1 -1 -1 1
4 -1 1 -1 2
5 -1 1 1 3
During the process, when record 1 and record 2a@rgared, the countd0,c1_1,¢_11 and ¢11 will be
cl0 | cl1.1| c 11 cl1
1 1 0 0

and sincecl0 ==1,c1.1>0,c_11 ==0,c10 is 1 corresponding to variabley in column 2, and

m[2,1] == —1, so the diagonal af:[2,1], m[1,2] is set to be -1, where row 1 has unprimedhe resulting
matrix will be

Variables
Record

X y z w
1 -1 -1 -1
2 -1 1 -1 -1
3 -1 -1 1 -1
4 -1 -1
5 -1 1

106

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September @12

Then compare records 1 and 3, the correspondingtsaue

cl0 | c1. 1| c 11 cl1
0 1 1 0

In this case, no action can be taken.
Then compare records 1 and 4, the correspondingtsaue
cl0 | c1.1| c 11 cl1

0 1 2 0

In this case also, no action can be taken.
Then compare records 1 and 5, the correspondingtsaue

cl0 | c1.1| c 11 cl1
0 1 3 0

In this case also, no action can be taken.

Then, in the next iteration, records 2 and 3 arepared and the corresponding counts are
cl0 | c1.1| c 11 cl1

0 1 1 0

In this case, there are no action can be appliedn Tompare records 2 and 4, the correspondingsava

cl0 | c1. 1| c 11 cl1

0 0 1 1

and since10 == 0, c1_1 == 0, andc_11 > 0, the record 4 will be removed. The resulting matvill be

Variables
Record
y z w
1 -1 -1 -1
2 -1 1 -1 -1
3 -1 -1 -1
5 -1 1 1

Then records 2 and 5 are compared and the corrésgooounts are

cl0 | c1. 1| c 11 cl1

0 0 2 1

and sincecl0 ==0,c1_1==0, andc_11 > 0, in the similar way of previous step the recordy&is
removed. The resulting in a new matrix as

Variables
Record
X y z w
1 1 -1 -1 -1
2 -1 1 -1 -1
3 -1 -1 1 -1

Since no more possible comparisons, this methetbgped with the resultant matrix:

Variables
Record
X y z w
-1 -1 -1
-1 1 -1 -1
-1 -1 1 -1

The best minimal expression will be+ y + z

107

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September @12

ll. RESULTS AND DISCUSSION

The algorithm is implemented and tested by givieigesal Boolean expressions of varying complexitye T

simplification resulted in the best minimal formgsible

for the expression considered. The examples riingea simple one like'y + xy + y’ to a complicated
one with several variables lik”' + r + ma’ + a + he' + ef' + ef + sa'g’ + sag’ + sag +
ma't + mat + m't + h'i + hi + bo'l' + lyz + lyz' + ly' + ok’ + okn' + okn + expr' +
exp’ + p + r + e'x.The corresponding simplified expressionsi(tru@) dnt+ r + m + a + h + e +
s+p+i+b+t+ x4+ 1+ oare showninFig. 1 and Fig. 2 respectively —sh@pshot of the output

of the program.

SimBool

EEX)

Simpifying of Boolean Expression

SOF Boolean Expression [7 4oy 0

Simplfied Expression | 1

Time 0

Clear Cancel

Figure 1. Snapshot of the output for the expression
Xy+ xy +y

SimBool PEx
Simplifying of Boolean E xpression
S0P Bodkesn Expresson [y 4ytma ' +a+1 '+if ' +iftba'g'+hag' +thgtma ' himahtm'h
+tlettotso 1 +iy +lyz+lyz tokntokn ' +ok '+ixpr ' +ixp
Ttptriitx
Sinplfied Expression | tx e thtets i tht thutlbo
Time: 15625

Figure 2. Snapshot of the output for the expresgidn+ r +
ma' + a +he' + ef + ef + sa'g’ + sag’ + sag +
ma't + mat + m't + h'i + hi + bo'l' + lyz +

lyz' + ly' + ok’ + okn’ + okn + expr’ + exp' +
p+7r+ex

The following table shows 10 sample expressionsthei reduced form produced by the program:
TABLE 1: TEST CASE OF EXPRESSIONS WITH VARIED NUMBEOF VARIABLES, OBTAINED REDUCED FORM

AND TIME TAKEN.
Number Time Further
Expression of taken Reduced form reduction
variables (ms) possible
xXy+ xy + vy 2 0 1 No
xyz+ xy + z'y 3 0 y No
xyz + xyw' + xyz + xyz + xyw' + yz + yw 4 0 y+ z No
ab’c+ ab'c’+ bcde + bed + bce' + bc'+ cd + de'+ e 5 0 i+ b+c+d No
e
abcd' + cdef’ + efba’ + abd + abc’ + cdf + cde + efa
+ efb’ 6 0 ab + cd + ef No
ad' + d + bcdg + bcd'g’ + g + a’ef + aef + abhi + a+bc+d+ef
a'hi + bhi 9 0 +g+ hi No
a'bed + a'bc’ + a'bd’ + c'de + c'de’ + e'fgh + e'fgh' + . , ,
e'fg’ + g'hijk + g'hj + g'hj’ + i'j + ab'c'dk’l + 12 15625 | L/ +cd+gh No
abc'dk'l + a'c'dk’l + cdk'l + d'k'l ta'b +e'f + Kkl
ao + b'n+ cm + d'l' + ek + fj'+ gi+h+aoe'k' + . ,
aoe'k + aoe + b'nh'i + b'nh'i" +cmd +cemd’ + d'l'f'j + 15 15.625 fi +”h +b'n N
dUfj + d'Uj + efk + ef'k + fgij' + gij + f'gi + gij + : +dl' +ao+cm °
Fi'h' +h + ek + ig
higate + higate' + higat’ + hig'a + hia' + a + i'mbc + L,
i'mb'c + i'mc’ + tinyd'f' + tinyd'f + tinyd + expr's’ + 18 15.625 hi ""l m+ a No
expr + exps + tiny + exp
dr' + r + ma' + a + he' + ef + ef + sa’g’ + sag’ + d+r+m+a
sag + ma't + mat + m't + h'i + hi + bo'l' + lyz + 21 15.625 +h+e+s+t No
lyz' + ly' + ok’ + okn' + okn + expr’ + exp’ + p + r + ’ +i+b+o+1
e'x +x+p+r

108

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September @12

REFERENCES

[1] Singh, A.K., Manish Tiwari, and Arun Prakash, DédiPrinciples Switching Theory. New Delhi: New
age International Publishers, 2006. ch.2,3

[2] Matt Telles, and Kogent Solutions Inc, C\# 2005gPamming, India: Dreamtech Press, 2008.

[3] James, L. Hein. (2004). Discrete Structures, Logitj Computability, New Delhi: Narosa Publishing
House, 2004, pp.572-581

Dr S Mahesangraduated from University of Jaffna, specialisingStatistics, did M.Sc. in Computing at
Cardiff University of Wales, UK, and then obtainedPh.D. in Computer Science from University of Vgale
He is interested in range of fields in Computere8ce: Theory of Languages, High Performance Comguti
Numerical Computing, Knowledge Representation, Nétuanguage Processing, Machine Learning, Image
Processing, and Bio Informatics.

T Mathialakan was born in Alaveddy, Jaffna, Sri Lanka. He gradddrom University of Jaffna, Jaffna, Sri
Lanka, specializing in Computer Science. He has hvearking as a lecturer at the Department of Playsic
Science, Vavuniya Campus of the University of Jaffimce 2008. Before attached this department ivece
as an assistant lecturer at the Department of Cenfeience, Faculty of Science. He is interesteSaitellite
Image Processing, Numerical Computing, Scientifiomputing and High Performance Algorithms.

109

